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A brief description is given, with a new geometrical derivation, of the changes in 
velocity, vorticity and helicity of fluid elements and fluid volumes in inviscid flow. 
When a compact material volume V, moves with a velocity V, in a flow which at 
infinity has a velocity Urn and uniform vorticity 9, i t  is shown that in general there 
is a net change AHE in the integral of helicity H E  in the external region VE outside 
the volume, i.e. HE = SVpu-wdV changes by AHE, where u and w are the velocity 
and vorticity fields. When the vorticity at infinity is weak (i.e. lshlfi < I U, - Vbl) and 
when 52 is parallel to ub and U,, the change in the external helicity integral, AHE is 
proportional to the dipole strength of Vb. For the case of volumes with reflectional 
symmetry about an axis parallel to their direction of motion (e.g. axisymmetric 
volumes), AH, = - (( ub - Urn) a) V, C,, where C, = f( 1 + C,), and C, is the added 
mass coefficient. So for a sphere moving along the axis of a pure rotating flow, 
AH - - _  - 
generated by the flow around a volume when (Vb- Urn) A 9 =+ 0, but for symmetric 
volumes there is no net contribution to AHE if (vb- Urn) A sh = 0. These results are 
used to develop some new physical concepts about helicity in turbulent flow, in 
particular concerning the helicity associated with eddy motions in rotating flows and 
the relative speed E,  of the boundary defining a region of turbulent flow moving into 
an adjacent region of weak or non-existent turbulence. 

:V, (ub.52), which is negative. Larger values of the local helicity ( u - w )  are 

1. Introduction and review of vorticity and velocity of fluid elements 
Recent research in turbulence has been greatly helped by studying the dynamics 

and motion of particular vortical regions of the flow. These deterministic studies tend 
to focus either on the large-scale vortices and their mutual interactions (Melander & 
Hussain 1990) or on how these vortices interact with the small-scale vorticity field 
(Hussain 1986). To make the best use of vortex dynamics for improving our 
understanding and interpreting the computation of vortex interactions, it is 
important to use as effectively as possible the basic results connecting the vorticity 
w and the velocity u of fluid elements as they move, and the conservation conditions 
involving the integral of helicity density ( u . 0 )  (hereafter abbreviated to helicity) 
within material volumes as they move in the flow. In a number of recent papers, the 
distribution of helicity in turbulent flow has been discussed and computed (e.g. 
Levich & Tsinober 1983; Rogers & Moin 1987) but no use has been made of volume 
integrals of helicity. Numerical computations, such as these, of viscous flows at  high 
Reynolds number, are usually interpreted in terms of concepts of vortex dynamics 
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that were developed for inviscid flows. Although there are limitations in this 
idealization, helicity does provide useful ideas for analysing vortex dynamics and the 
mechanics of vortical flows. 

This note has a review element, in which we give a new geometrical derivation of 
the old but neglected result linking the change of velocity of fluid elements to their 
displacements. This naturally leads on to the well-established results of Moffatt 
(1969). We derive a new result showing how a net contribution to the helicity integral 
is generated outside fluid volumes as they move through regions of fluid with 
background vorticity. As a specific case, a calculation is given for the helicity 
generated outside a spherical volume such as a bubble or a spherical vortex as it 
moves through a region of weakly rotating flow, as it is evident that the conservation 
condition for the helicity integral can also be applied to some part of a region of 
vortical flow if the flow elsewhere does not change. We show how this idea may be 
useful in analysing and computing the motion of limited lengths of long vortex tubes 
where they interact with other vortices, while the rest of the vortex tubes are 
unchanged, a result that is derived from the study of Berger & Field (1984). 

Finally, we show how these concepts and results can be used to study the helicity 
in turbulent flow. 

For inviscid rotational flows which are adiabatic and reversible, the vorticity 
w(x , t )  and density p(x , t )  at a point x and time t are related to the vorticity and 
density of the same fluid element located at  a at time to, by Cauchy’s result expressed 
in suffix notation (see Batchelor 1967, p. 276) as 

The physical explanation is that 
w - cx dl, 
P 

where dl is the (vector) length of a line element moving with the fluid, and chosen at 
time to to be aligned with the local vorticity vector w(a,to). 

There is also Weber’s (1868) transformation (see Serrin 1959, p. 169) for the change 
in the velocity u of the fluid element, namely 

( 1 . 3 4  

where V ( x ,  t )  is a scalar potential function of x ,  which can be expressed in terms of 
the pressure field p and kinetic energy along the path of the fluid element from to to 
t as an integral, 

(1.3b) 

Equation ( 1 . 3 ~ )  has been rediscovered and proved several times, for example by 
Elsasser (1956) and most recently by Goldstein (1978). 

Goldstein (1978) and Goldstein & Durbin (1980) showed that ( 1 . 3 ~ ~ )  is an 
important practical result because it enables weak velocity perturbations U’ to 
irrotational mean motions U ( x )  to be calculated directly. aa,/axt is calculated from 
the displacements (or drift functions) caused by the mean flow (for a review see Hunt 
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FIGURE 1.  Showing how the material line C, between A and B moves to C; between A‘ and B and 
also how the ‘partial’ circuits C,, C,, C, .. . change to C; ,  C;, C; ... . Kelvin’s theorem is taken round 
C, and each partial circuit. 

1987). Thence u,(t) is calculated in terms of u,(t,). The scalar Y can be obtained from 
continuity. 

There is a simple geometrical and physical demonstration of the validity of (1.3a), 
which we now give based on Kelvin’s circulation theorem (see figure 1). Take the line 
integral Suedl along a path C, between the points A and B at time to. Then draw an 
arbitrary curve C, between B and A and take the line integral along this line C,. 
There is now a line integral on a closed loop passing through A and B. We refer to 
C, and C, as ‘partial ’ circuits of the whole loop. They are denoted in parentheses, e.g. 
(C,), next to the integral. 

After a time (t-to) this loop has moved and been distorted. The points A and B 
have moved to A‘, B and the partial circuits have moved to C; and Ci. By Kelvin’s 
circulation theorem the circulation around C, and C, is equal to that around Ch and 
cl,; so 

~*dl( t , )  = u . d l ( t ) + r  u - dl(t). (1.4) 
A’(C;) B’(C;) 

u-dZ(t , )+r  B ( C , )  
A(C0) 

Since we are mainly interested in how u(x) changes on the fluid element that travels 
from A to A’ rather than in the line integral on the whole circuit, C,+C,, we might 
consider another possible ‘partial ’ circuit C, from B to A ,  which changes to C;l at  time 
t. In fact we can consider an infinite number of possible partial circuits C, from B to 
A ,  which are changed to C:, from B to A‘ at time t. The circulation theorem (1.4) can 
be rewritten in terms of C, and any of these other partial circuits, i.e. 

u * dZ(t). (1.5) 

Since C, or C, can be chosen arbitrarily, and since a line integral that is independent 
of the path is only a function of its end points, this difference can only be a scalar 
function Y of the positions x, y of A’ and B .  Therefore 

P’ A’(C;) P A(C,) P B(C,)  WCb) 

u - dZ(t,) - u.dl(t,) = P’ u.dl(t)- 

19 
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where Y ( x )  is an unknown function of x, t and to. It has the property that when 
t = to,  Y = 0 for all x. 

Taking the limit of B tending to A’, and expressing the position of B and B as 
y = x+dx(t)  and b = a+da(t,) = a+(aa/axi)dx,, (1.6) reduces to 

ay 
ui(x, t )  dx,(t) = u@, to)  daj(to) +-dxk(t). (1.7) 

Then, since each component of d x ( t )  can be taken as independent, (1.3) is recovered. 
The potential Y is determined by assuming that the velocity field at time t satisfies 

continuity 

For incompressible flow, where au,/axc = 0, this equation is sufficient to define Y in 
terms of u(x ,  t ) .  If the density varies in the fluid, the results (1 .1)  and (1.3) are valid 
for each material element, provided that the fluid is barotropic (i.e. V p  A V p  = 0) 
over the volume of the material element, and that any body forces per unit mass are 
conservative. In  that case (1.8) shows that Y is a function of u and p. 

A simple example of the insight provided by this elemental form of Kelvin’s 
theorem is provided by the case of weak, small-scale, three-dimensional rotational 
fluctuations u in two-dimensional straining motions U = ( -ax1, ax,, 0) where a > 0. 

Provided ~~i3ui/i3x,~~ is much less than a, aa,/ax, is determined by U; so that 
(aal/axl) = e+u(t-to); (aa,/aX,) = e-a(t-to), aa,/ax, = 1 and the cross-components are 
zero. Since Y is the solution of the Poisson’s equation, and since aY/ax, has 
components in all three directions, the magnitude of this gradient is less than 
lu,aa,/ax,l. In general, for the directions in which Idl,l has the greatest distortion, 
ui increases or decreases according to whether ldlJ (or laxi/aa,l) decreases or increases. 
For the other directions V Y  may determine the change in ui. So in 
this two-dimensional strain, u; increases and ui decreases because Idlll is decreased 
and IdZ,l is increased. But ui  is unchanged by the term aa3/ax3 and is therefore 
determined by VY. Generally, as in this case, V Y  acts to reduce the anisotropy, and 
therefore u: increases (Batchelor & Proudman 1954). 

For three-dimensional fluctuations, qualitative vortex stretching arguments (e.g. 
Hunt 1973) are equally effective, but they do not apply to two-dimensional 
fluctuations for which the magnitude of vorticity is unchanged. In this example, if 
the initial fluctuations lie in the (xl, x,)-plane, their vorticity is not changed, but the 
distribution of vortex lines is altered as the vortex lines ‘pile up’ at the stagnation 
point (Hunt 1973, pp. 643, 672). By considering the changes in dli, it  follows that for 
two-dimensional as well as three-dimensional fluctuations, there is a reduction in u: 
and an increase in ut. 

An example of the physical insight given by (1.3) for inhomogeneous flow was 
given by Hunt (1987), along with a brief account of the informal proof presented 
here. 

2. Helicity of fluid elements and fluid volumes 
2.1. General results 

The concept of the helicity density 

h = u . o ( x , t ) ,  
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H =  (U-w)dV s and the helicity integral 

were introduced to fluid mechanics by Moffatt (1969). He considered this integral 
over the whole flow or ovcr a material volume bounded by a surface on which the 
normal component of vorticity is zero. Then H is conserved in inviscid flows for which 
p is a unique function of pressure p (i.e. the fluid is barotropic) and any body forces 
are conservative. Obviously, h is not a conserved property and in general varies in 
space and time in turbulent flc s. Note that if h > 0 or < 0 the motion has locally 
a right-handed or left-handed ielical structure. 

Since then there have been many papers reporting on computations and 
measurements of h in various flows, but for H there have only been computational 
results (e.g. Kida & Murakami 1989). There has been particular interest in the 
mechanism for the generation and the distribution of helicity h in turbulent flows. I n  
the coherent structures found in turbulcnt shear layers there are regions where h is 
large (both positive and negative) and other regions where h is very small (Hussain 
1986). Levich & Tsinober (1983) and Rogers & Moin (1987) have computed the 
distribution of h in homogeneous turbulent flow. Since there can be no production of 
vorticity if u A w = 0, it follows that the production of vorticity and the cascade of 
energy to small scales in turbulence must be very weak if u is parallel to  w and Ihl 
becomes comparable with (m): (Andr6 & Lesieur 1977). 

Almost no use has been made of the conservation condition that for inviscid flow 
H = constant in the above discussions of helicity and turbulence, possibly because i t  
has usually been interpreted as only being valid when the integral is taken over the 
whole region of the flow. (Moffatt’s (1969) discussion of a blob of vorticity should be 
read carefully !). An important point of this note is to show how helicity integrals can 
and should be used within different regions of a flow. I n  $4 we consider in detail 
helicity in coherent structures. 

From (1.7) and ( 1 . 1 )  the helicity density of a material element a t  time t can be 
expressed in terms of its value a t  time to.  Since dl cc a l p  

Therefore, 

Note that h(x ,  t )  does not equal h(a ,  t o ) .  

2 .2 .  Helicity of material volumes of Jluid 
Now consider a set of non-overlapping volumes each of volume V,, in each of which 
w + 0. Let thc surfacc around each volume be S,, such that w-n  = 0, and let the flow 
within the space between these volumes be irrotational, i.e. w = 0 (see figure Za). The 
helicity density h = u-w can be integrated over each volume V, to obtain the helicity 
integral H ,  for each material volume. 

Using (2.4), H ,  at time t can be related to its value a t  time to,  since 
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S"' 

FIGURE 2. (a) Discrete non-overlapping volumes Vblb(") of inviscid vortical flow separated by 
irrotational flow. The density of each K,,,) may differ but within V,,,") the flow is adiabatic and 
reversible. The helicity integral H,, is conserved for each volume. ( b )  Particular case of the 
interaction between two vortical flow volumes V,,,,, V,,,, occurring in a small region with lengthscale 
1,  to show how the conservation of the helicity integral in a volume P') can be used even when 
vortex lines cut the surface 8'') of T"'), provided (L/1) is large enough and the flow in does not 
change. 

From the conservation of mass of each material element 

p ( x ,  4 d x  = p(a, to)  da, 
and since V - o  = 0, (2.5) becomes 

Hb(t) = (u*u(u, to))  daf  Y(x, t )w*dS,  (2.6) s,, 1% 
where dS is the outward normal area element on S,. Since (o dS) = 0 on S, it follows 
that the helicity integral for each material volume as it moves around is constant, i.e. 

Hb(t)  = Hb(tO)' (2.7) 
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It is simpler to use the Eulerian equation for u and w to calculate the rate of change 
of the helicity integral H ( t )  within a volume fixed in space. It is found that for a 
barotropic flow 

Hence if 101 = 0, on S,, aH/at  = 0. If S ,  is outside V,, (2.8) is consistent with (2.7). 
In  turbulent flows the total helicity integral H taken over the whole volume is 

usually small, but over any particular regions of the flow where the vorticity is large, 
H ,  and H may be significant (see $4,  where we define 'small' and 'significant'). In  
some shear flows, Hb may be non-zero and have the same sign for most of the vortical 
eddies (e.g. the large swirling ring vortices in swirling turbulent jets). 

The result (2.7) shows that in the absence of viscous diffusion and any vorticity 
connecting the different volumes, the helicity integral H ,  of each volume is 
conserved, even though the interaction between the volumes may be strong, causing 
large changes of u and o within the volumes. Also in the presence of any large-scale 
irrotational motion H ,  is conserved. Note that in such interactions, the impulse 
Pb = & j  (x A w )  dV of each volume is generally changed (Hunt 1987). 

In  some interactions between non-overlapping regions of flow occupying material 
volumes V, and V,, with lengthscales L,  and L2, the interactions only lead to changes 
in the vortical field over a limited region of length I which is much less than L, 
and L,. In  that case the helicity integrals H ,  for each of the volumes vb(l) and vb(2) 

can be expressed as the sum of two integrals, H f )  over the regions P I )  where the 
interaction takes place and HLN,") over the rest of the space VtN1) where they do not 
take place. Thus 

H b ( t )  = H$,')(t) + HkN,")(t). (2.9) 
Since H ,  is unchanged and within the volume V(N1), u and w are undisturbed, it 

follows that the helicity integral over a partial fluid volume HS)  is unchanged. So in 
some circumstances during the interaction, the helicity integral is conserved over a 
partial fluid volume. 

One interesting consequence of this result is that it is impossible for a propagating 
helical disturbance to be generated on part of a vortex tube by any irrotational flow 
field around it, such as may be caused by another vortex tube. By 'propagating' is 
meant a disturbance that travels far from where it is generated on the vortex tube. 

This result can be applied to computational studies of local interactions on scale 
1 between parts of vortex tubes of strength r where the computational domain 
extends over a scale L % 1, (see figure 2b). (See also Berger & Field 1984.) From (2.8) 
the rate of change of H$,I) within the interaction domain can be expressed in terms of 
the initial values and perturbations (denoted by do) and Au) to the velocity, vorticity 
and pressure at the surface of the domain S I ) .  For the case of vortex tubes, this 
surface can be chosen so that u(O).i = 0 over S(I) and do) is the same at the two 
intersections. Then 

+ ( w ( ~ ) .  ti) p- (u(0). AU + + ( A ~ ) Z )  ds. (2.10) 
P I1 

The magnitude of the velocity perturbations Au induced by the local distortions of 
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the vortex tubes on a scale 1 a t  time t = 0 is equivalent to that produced by a dipole 
of strength n2. So over the surface which is at a distance of order L from the 
interaction zone, 

But the perturbation vorticity on S ( I )  changes with time: 

Thence, from (2.10) (2.11) 

This estimate indicat,es that  when a helicity integral is evaluated over a finite 
computational domain, its size does not have to be very large compared with the 
lengthscales over which the interactions occur, in order that the computed integrals 
will be conserved, for each fluid volume ( Vbb(l), Vb(2)). 

The result (2.7) can be applied to flows with variation in density in space and time, 
provided that the fluid is barotropic within each volume and that any body forces per 
unit mass are conservative. In turbulent flows with significant density fluctuations 
it is customary to use Favre-averaging (i.e. considering puiu( as opposed to 
Reynolds-averaging (i.e. u,)) in analysing the dynamics (Favre 1969). The results 
(2.4)-(2.8) clearly suggest that, when considering helicity, it is possible to construct 
integrals that are invariant and independent of barotropic density variations. 

3. Helicity induced outside fluid volumes in rotational flows 
We consider the distribution of helicity in steady inviscid rotational flows outside 

compact material volumes which are moving through the flow. From this idealized 
flow some interesting suggestions emerge about helicity in turbulent flows. Consider 
a large domain of fluid in solid-body rotation with vorticity 0, into which a volume 
V, is introduced, moving steadily with a velocity vb. The volume might be a bubble 
or the inside of a closed streamline surface of a vortical eddy such as a vortex ring. 
There may or may not be a vortical flow within the volume (figure 3a) .  Let the 
diameter of the volume be 2a, which is of the order (Vb)i. 

The solution makes use of a Galilean transformation of the coordinate system to 
calculate u and o, but since helicity is not a Galilean-invariant quantity, helicity and 
its integral are calculated in a fixed coordinate system. 

In order to obtain analytical solutions, we consider situations where the 
background vorticity is weak compared with the strain rate Ivbl/u in the flow around 
the volume. Also, this enables us to obtain solutions for spherical volumes moving at  
arbitrary angles to the flow. First we consider volumes with arbitrary shape and 
then those with certain symmetries. 

3.1. The volume moves parallel to the rotation axis 
The formal problem to be solved is to obtain the solution of 

am - + ( u . V ) o  = (o*V)u, 
at 
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w = n  

.Vb entering V 

t 

FIQIJRE 3. (a) Volume V, moving with velocity u, parallel to a rotating flow. V, is the external 
region round the volume. V is the total volume. S,  is the surface of the total volume. (b)  Volume 
V, moving with velocity u, perpendicular to 0. Note how as the vortex lines are distorted, they 
remain parallel to the surfaces where the ‘drift ’ or time function T(x)  is constant. 

where V - u  = 0, and o = W A u subject to u-fi = v,.fi on S,, where the unit normal 
unit vector n = 0 and f i  is the normal vector. Far from the volume, as Inl/a --f 00, 

u+$ A x. The solution for w in terms of u is obtained by rewriting (3.1) in 
coordinates x‘ moving in the body, where xf = x - v b t ,  and where x = vbt is the 
location of a reference point (e.g. the centre) of the volume. Then, in terms of the 
relative velocity, 

uf = U-Vb. ( 3 . 2 ~ )  

Since the flow in these coordinates is steady, (3.1) becomes 

( u f . V ) o  = (o.V)u’, (3 .2b)  

where u’ .n=O on n = 0 ,  ( 3 . 2 ~ )  

and 
( 3 . 2 d )  
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We consider the solution where the background rotation is weak, compared with the 
gradient in the velocity field around the moving volume, i.e. 

where 

For future reference we define a unit velocity vector, 

fib=!!,  
‘b 

(3.3) 

(3.4) 

The solutions for u‘, a’ can be expressed as expansions in E ,  normalized on vb and a : 

I u’ = u,(u’(O) + EU’(1) + . . .) 

where, as Inl/a + 00, 

(3.5) 

( 3 . 6 ~ )  

and a’(o) = 0, = a/a. (3.6b) 

Therefore, from (3.2b) do) is zero everywhere and u’(O) is the unique irrotational 
velocity field, with boundary conditions (3.2 c) and ( 3 . 6 ~ ) .  The first-order vorticity 
satisfies 

(3.7) (u ’ (o ) .  V) a’(l) = V) u’ (o) .  

Since a’(1) is parallel to u’(O) as In1 + 00, (from 3.6a, b )  i t  follows that the solution 
to (3.7) is 

a’(l)(x) = au’(O)(x) Vx’(ln1 2 O ) ,  (3.8) 

where (3.9) 

(This is a well-known solution; see the review by Hunt 1987.) Note that to leading 
order the vorticity is parallel to its surface on the volume (i.e. fi.0 = 0 on In1 = O). ) .  
Thence from (3.6a), (3.8), (3.9) the helicity is given as 

U h = ( u ’ w )  = u b ~ [ ( ~ ’ ( o ) + i r b ) ’ ~ ~ u ’ ( o ) ]  = -(n’o,) (~’(o)+t)b)’u’(o). (3.10) 
a 

Inspection of (3.10) shows how the sign of h varies in the flow around a typical 
volume. Consider a spheroid with one axis aligned with the flow. The component of 
the potential velocity u’(O) parallel to ir, decreases from 0 at the stagnation point to 
less than - 1 a t  the sides of the volume. Here the component of velocity (u’(O) + 6,).6, 
in fixed coordinates is negative. Therefore around the sides of these bodies h is 
negative if sZ.ub is positive. On the other hand, on the stagnation streamline the 
component of u’(O) parallel to 6, lies between - 1 and 0, so that in fixed coordinates 
in this direction (u’(O) + 8,).irb is positive. Therefore on the stagnation streamline, 
(~’(~)+ir,) .u’(O) is negative and h is positive if O.u, is positive (figure 3a). 

The external helicity integral H E  (which is dimensional and defined in fixed 
coordinates) over the external volume VE can be calculated from (3.10), for general 
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flows satisfying (3.3). Since u'(O) is irrotational, we can express u'(O) + 6, in terms of a 
normalized potential $ as 

u'(0) + 6, = V$, (3.11) 
where Vz$ = 0, and from (3.10) 

hdV = -(O.V,) [V$*V$-V*($fi,)]dV 
H E  = 1, s,, 

where S ,  is an arbitrary surface far from V,. 
Since (V$.fi) = ( f i , . f i )  on S,, and V$+O(rP3) as r + w ,  

HE = ( O - V , ) ~  ( f i b ' i i ) $ d s  as r + w .  (3.12 b )  

Following Batchelor (1967, p. 399) as r +  co, $ - -C,cos8/r2 where cose = O , . i i ,  
1% 

and ds = 2nr2 sin Ode, 
HE = -$C1 V,(Q. Ub) 

= -~7cc,(O.u,) V,. 

Since fib and qi are normalized, C, is a constant which depends only on the shape of 
the volume. C, and therefore H E  are defined by the strength of the equivalent dipole 
that produces the same perturbation in the far field as the volume. Up to this point 
the analysis applies to any shape and C, can always be computed. 

For the class of shapes that have reflectional symmetry about an axis parallel to 
v,, the dipole is aligned with the flow. Then the integral over the surface at  infinity 
(3.12b) can be expressed in terms of the kinetic energy of the velocity field outside the 
volume (iC, p$, V,), where C, is the added mass coefficient, and of the kinetic energy 
of the fictional flow within the volume (&vk Vb), so that 

( 3 . 1 2 ~ )  1 c - - ( l+C&f) ,  - 47c 

where c"=v, ' S  V E  
(Batchelor 1967, pp. 398403). Then (3.12b) becomes 

H E  = - c ~ ( a . U , ) V b ,  where C, =f(I+C,) .  (3.12d) 

One implication of (3.12d) is that any elongated cylindrical shape (e.g. a needle) 
moving parallel to itself produces a negligible change in kinetic energy (i.e. C, = 0) ,  
but because it displaces the flow, it induces a change in helicity, with the coefficient c --I 

However, for volumes that significantly disturb the flow, C, and therefore C, are 
increased. For a sphere, C, = a, C, = a; for a circular cylinder moving normal to its 
axis, C, = 1, C, = 8, and for a disc moving normal to its axis, the high kinetic energy 
at  the edges leads to C, = g, and thence CH = +. 

Thus, from (3.10), and (3.12) any symmetrical fluid volume moving with velocity 
ub parallel to a weak rotational motion produces a net helicity integral 

H = -(O.U,) & C H + H b ,  (3.13) 

H - 3' 
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where H ,  is the helicity integral within the volume. 
If there is a mean uniform motion Urn parallel to 51, the helicity density is non-zero 

far from the volume, and the integral ( 3 . 1 2 ~ )  does not converge. However, consider 
the change in thc nct hclicity intcgral AHE produccd by the volume which is defined 

AHE = lV, (w-U-51. U,)dV. 

(Although this is equivalent to a change in the frame of reference, it is not generally 
possible to assume how H changes under a Galilean transformation without a 
detailed calculation, especially when, as in this case, $ (w-51) dV is a divergent 
integral.) Assuming that the vorticity is weak enough that 

Iq,-umI 9 Inla. (3.14) 

J .  C. R. Hunt and F .  Hussain 

by 

then the same analysis as in (3.12) can be used, whence 

= ( ( u , - u b ) ' f i )  VbcJf. (3.15) 

Note that (3.12) and (3.15) do not contradict the result that the helicity integral H 
is constant in inviscid flow. 

If we consider a finite volume V of fluid in rotation with Urn = 0, then as each 
volume V, enters it,  the integral H in V is increased by AHE (from Moffatt 1969), 
where AHE is determined by the integral in (2.8) involving the flow across the 
entering surface S ,  (figure 3a). 

In  general it is simpler to estimate H from the local motion rather than from the 
production of H by motions across the boundary or by viscous processes, so we 
concentrate on the former direct approach. 

3.2. Volumes moving perpendicular to the rotation axis 
If in our model flow, the volume V, moves with velocity vb = (w,, O ?  0) perpendicular 
to  the imposed velocity 51 = ( O , Q , O ) ,  then the vorticity and velocity outside V, are 
distorted. By again assuming weak vorticity, i.e. lQl 4 wb/a, it  is possible to use the 
result (1.1) (with the methods reviewed by Hunt 1987). 

Once again we analyse the change in w by considering a steady flow with a steady 
incident velocity ( -  u,) in a frame of reference moving with the volume. The weak 
vorticity is transported and distorted by the potential flow u'(O) around the volume. 
Since w is initially perpendicular to  the approach flow ( - u,) i t  lies in surfaces where 
the 'drift' or 'time of flight' T(x) (of the potential flow) is constant. These drift 
surfaces are material surfaces which are deformed as they are transported over the 
volume. Consequently the vortex lines remain within the surfaces and are therefore 
perpendicular to VT (figure 3b). Using the theory originated by Lighthill (1956), and 
later applied by Durbin (1981) and Hunt (1987), and using the fact that VT-u"O' = 1 
(in normalized form), w can be expressed in terms of VT and u'(O) (to first order). 
Then the helicity can be expressed in terms of the vector x from the volume centre 
and the radius vector 2 from the axis of motion, namely 

W - u  = -(VT A (2, A ~ ) c o s 8 ~ ~ " o ~ ) ~ , ~ ~ , / ~ ,  (3.16) 

where cos8 = R.a/Q, 2 = -(2 A 2,) A dl = 2T(21;2)21, and 2,xl are unit vectors 
in the x and x1 directions. Note 2l = - 8, and R + R, as 2 + 00. 

Far downstream of the volume the drift surfaces, and therefore w ,  become nearly 
parallel to the x-axis (assumed to be the axis of symmetry) (Hawthorne & Martin 
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1955). But the large component parallel to the x-axis, ol, has opposite signs above 
and below the plane y = 0 (or w.Z., 3 0 for x . 0  5 0, respectively). The maximum 
positive and negative values of helicity above and below' the y = 0 plane are given 

(3.17) 

Since any fluid element approaching V, on the stagnation line takes an infinite drift 
time T to reach the x-axis downwind of V,, T(R)  and VT(R) tend to infinity as the 
distance R from the x-axis tends to zero. Therefore from (3.17) strong helicity 
variations are generated near the axis of the volume (and on its surface), and they 
persist far downstream of the volume. In the previous case of ub parallel to a, there 
was no effect on h far downstream of the volume. 

The next step is to consider the contribution to the net helicity integral HE. From 
(3.17) it follows that over the area (e.g. A,)  of any plane downwind of V,, the integral 
of helicity is zero. Therefore to evaluate the integral of helicity around the volume 
HE, we need only consider the integral near the volume. The component of vorticity 
parallel to the surface becomes very large as the vortex lines are wrapped around the 
surface. 

Near the surface of V,, where the distance normal to the surface n = In1 is small 
compared with a, the helicity (from (3.16)) is 

h = O - U  O((VT.~)SZV,) K Q u w , / ~ .  (3.18) 

Because h oc (l /n) as n+O, HE is a divergent volume integral. Suppose the integral 
is taken to a small distance no (g a )  from the surface of V,,  then from the 
symmetry it is clear that HE(% > no) = JvE(w.u)dV can only be non-zero if the flow 
around V, is asymmetric. (In a viscous flow, such singularities would be smoothed 
out, and the integral would converge.) 

Since H E  = 0 for a sphere moving perpendicular to weak vorticity it follows that 
the change in external helicity AHE can be computed for a sphere moving with a 
velocity u, in a general flow field U, with vorticity a provided that (3.14) is satisfied 
and a < ( ~ U , - u , ~ / ~ ~ V U , ~ ~ ) .  The result is the same as (3.15), namely 

M E  =i((u,-ub)'a) vb. (3.19) 

by 
h x -v,(VT*O). 

4. Aspects of helicity in turbulent flows 
4.1. Helicity statistics 

In this section we consider helicity in turbulent flows. Any large-scale rotation or 
acceleration is assumed to be weak enough not to affect the turbulence. We 
distinguish between the contributions to the helicity density h from the mean 
velocity and vorticity ii, 

It can also be revealing to focus on the large-scale, slowly changing but randomly 
moving coherent structures in turbulent flows. I n  these flow regions we distinguish 
between the large-scale coherent velocity and vorticity fields, defined in a frame 
moving with the structure, i.e. u,, a,, which are correlated across the structure, and 
the incoherent random fields u,,, a,,, which include small-scale motions and (at high 
Reynolds number) the motions with highest vorticity (Hussain 1986). Thus u = 
u, + urc. Note that in a fixed frame, where u = a+ u,, the mean fields ii, a are largely 
determined by uc,o,,  but the random fields ur,op, have contributions from the 
coherent and incoherent fields. 

and from all kinds of random fluctuations u,, a,. 
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Since the helicity is quadratic, the mean helicity E ,  and for coherent structures, the 
coherent helicity h,, may have contributions from both the random and incoherent 
fields, respectively. Thus in the fixed frame 

E=u-a+q, where K=u,.o,, (4.1) 

he = ~ , ~ o ~ + { h , , } ,  where h,, = u,,.o,,, (4.2) 

and in the frame of reference of a coherent structure 

where { } denotes averaging over an ensemble of similar coherent structures. 

interest, as defined by 
The r.m.s. of the fluctuations of h, and h,, about their mean values arc also of 

hi = [(h,--E,)7t, hi, = {(hrc-{hrc})~}~. (4.3) 
Measures for the relative magnitude of the mean and r.m.s. values of helicity 

fluctuations are - 

L, = E,/(U;w;),  4 = h;/(u;o;) ( 4 . 4 ~ )  

where ui = (u:); and w i  = (w:):. When f i ; is comparable with unity but Lr is much less 
than one, i t  means that u and o arc aligned ; but they are not on average in the same 
direction. Note that if the angle between the vectors u, and w, is 8, in isotropic 
turbulence cos28 = hi2 = + (Rogers & Moin 1987). But in the normalization of (4.4a), 
hi is divided by the smallest scales of motion which contribute most strongly to  of 
Since in high-Reynolds-number turbulence thc velocity and vorticity fluctuations 
are weakly correlated (Batchelor 1953), the mean and r.m.s. helicity fluctuation must 
be associated with the large-scale motion. Consequently a more revealing measure of 
helicity fluctuation would be a normalization based on characteristic values of the 
large scales, i.e. 

6; = h;L,/U: ( > i;), (4.46) 

where uh the r.m.s. velocity fluctuation and Lo is a local integral scale of fluctuation. 
From the idealized calculation of $3, we can estimate the possible magnitude of 

these helicity statistics for a flow field of distinct eddies (denoted by ‘ t ’ for ‘tour- 
billons ’) moving randomly through a mean flow with weak vorticity 51 = (a, 0,O) 
(figure 4a). These eddies are analogous to vortex rings which propel themselves 
and have an approximately closed surface of streamlines around them in a frame of 
reference moving with the eddy. These large eddies provide most of the energy of the 
random components u,, or, h,, hi of the whole flow. They are localized volumes with 
a net motion in a particular direction producing a positive high velocity within the 
volume and upstream and downstream of the volume, but a negative velocity outside 
them a t  their ‘equator’. In  a frame moving with the mean velocity, there must be 
a slow net backflow between the eddies. 

If the proportion of the total volume (or ‘void fraction ’) occupied by ‘eddies’ is A ,  
and the eddies (or ‘tourbillons’) move with velocity vt, the average values of u: and 
uf over the whole fluid can be estimated in terms of vt and A as 

u: z A$, uf z A$. (4.5a, b )  

- - - 

- 1  

- - 

Therefore A can be estimated from the ratio 

(figure 4b). 

Hunt, Kaimal & Gaynor 1988). 

(g)2/(2)3 x A-l (4.5c) 

Also, since these eddies dominate the random flow field, 2 - uhz (see, for example, 
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h large 

A L  

w = o  

from 
free 
stream 

FIGURE 4. (a) Helicity fluctuations induced by various eddies moving in a large-scale vorticity 
field. (b) Typical velocity profile-associated with an eddy, to show how the number of ‘eddies’ per 
unit volume A is related to u;, u:. ( c )  The movement of an interface, at a velocity Eb, between a 
turbulent region (n < 0) and a non-turbulent region (n > 0). ( d )  The distortion of turbulence at the 
stagnation points on ‘ribs’ between vortices, and indications of regions of relatively low- and high- 
level helicity. 

The mean helicity from these random motions &. can be estimated from (3.19). 
Assuming the eddies are on the average symmetrical, then there is no contribution 
to Zr from the flow external to  eddies moving perpendicular to a. Part of the 
contribution to Er comes from the helicity within each eddy H,, i.e. the integral 
jv, (U+u).(Q+w)dV over the volume V, of the eddy. The mean over all eddies is 
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{Ht } .  This produces a contribution to Et w A { H t } / K  when averaged over all space. 
The other helicity contribution comes from the motions external to those eddies 
which have a component of motion parallel or anti-parallel to 0. Adding the two 
contributions leads to Er w - CHt A(B. vt )  + Et. Typically the coefficient CHt varies 
between 5 and + as the eddy geometry varies from elongated to spherical. Using 
(4.5 b, c )  for estimates of vt and A ,  it follows that the order of magnitude of the mean 
helicity produced by the coherent motion is (if (q) 2 (q):) 

+ 6,. - ((U')=.(11.52)3 
(0")' h, w - 

Thus in a rotational flow if non-helical eddies (such as simple vortices and 
thermals) are generated so as to produce a skewed turbulent velocity field, a mean 
helicity will in general exist. For example, the external flow around buoyant 
thermals with a typical velocity w* rising in a rotating system can contribute a mean 
helicity proportional to  ( a - g )  w*. However, within the thermals the helicity is likely 
to be of opposite sign caused by concentration of vorticity by entrainment. Note that 
there may be a significant contribution to 2 from eddies within the inertial subrange, 
so that eddies with a wide range of scales can contribute to 6, (Hunt et al. 1988). 

Also fluctuations in helicity hi are produced by eddies moving either parallel or 
perpendicular to the mean rotation SZ. The contribution by the flow around the 
eddies to the normalized intensity of helicity fluctuation is, from (3.17) and (3.19), 

AQv, L 6%- 
u;2 ' 

where L is the scale of these eddies. Using (4.5), it follows that 

(4.7) 

Of course small-scale random wave-like fluctuations also produce helicity 
fluctuations in rotational flow (Moffatt 1978). But the important physical point of 
our analysis is that there may be regions of rather large helicity fluctuation just 
outside eddies or coherent structures moving through a rotational large-scale flow. 

I n  cases where I(u, A a)[ is large, regions of relatively high local helicity 
fluctuation on the sides of eddies are associated with regions of high vortex stretching 
and larger dissipation. But note that in this situation it is assumed that IwI is weak, 
so that, although o and u become nearly parallel in these regions, the normalized 
fluctuating helicity is small, i.c. < 1. If 101 were much stronger then the vortices 
stretched around the eddy would induce velocity fluctuations perpendicular to the 
vortices which would be stronger than the relative velocity of the eddy vt. In this 
case, the helicity would still be small, and the rate of dissipation would be locally 
large. This limiting case would be consistent with the hypothesis that where the 
dissipation rate (a) is large, the local helicity is relatively small; but the case of weak 
vorticity shows that this hypothesis does not imply a monotonic relation between l/s 
and h. In  fact, our eddy example shows that for weak helicity in straining flows where 
the helicity rises the dissipation can also increase. 

4.2. Helicity and entrainment 
The main reasons given for considering helicity density have been: that i t  is 
interesting because it is a conserved dynamical and topological quantity (for inviscid 
flows) ; that  is, it may be an indicator of nonlinear interactions ; and that it indicates 



Velocity, vorticity and helicity of inviscid Jluid 585 

the potential for the generation of magnetic fields in conducting fluids. However, 
information about helicity may have a more immediate practical use, because it is 
probably related to entrainment at a boundary betwccn turbulent and non-turbulent 
motions, such as occurs in jets, wakes, mixing layers, boundary layers, etc. 

A surface S of a coherent structure lies between rotational and approximately 
irrotational flow, and is defined by S(x,) = 0 with unit normal vector A. Since 
vorticity is solenoidal and vortex sheets do not exist a t  such surfaces, the normal 
component of vorticity must be zero ( w - A  = 0) (figure 4c). Therefore, o is parallel to 
the surface which implies that or, is also approximately parallel to S, since lorcl is 
large compared with 1 0 ~ 1 .  However, if the surface moves relative to the local large- 
scale flow, u,, there must be a component of the velocity fluctuation perpendicular 
to the surface, i.e. (urc-ii) =!= 0. 

Therefore if ~urc .or ,~  is small compared with U ' ~ / Z ,  where 1 is the integral scale 
of incoherent velocity fluctuations and uic = {u,",}', the surface S can move into 
the irrotational flow around the coherent structure, i.e. the criterion is that 
h",, = ~ u , , ~ o , , ~ / ( u ~ ~ / Z )  -4 1 .  The mean rate of movement of such an interface, in some 
local frame (e.g. a t  the edge of a vortex or a jet), is called the boundary entrainment 
velocity (E,). If E,  is defined in a frame moving with coherent velocity u,, then i t  
must depend on the modulus of the local helicity of the incoherent turbulence as well 
as the magnitude of local velocity fluctuations ui, and on the structure of large scales 
of motion (being independent of Reynolds number). Thus, where irc - 1, Eb/ui, is 
small, and where h", -4 1, Eb/ui, - 1. If the turbulence is highly anisotropic with large 
fluctuations parallel to the surface, so that h",, - 1 ,  there may still be a significant 
absolute value of E,, but the normalized value E,/uil will be less than in the case 
where the velocity fluctuations are more isotropic and h,, -4 1.  (The physical meaning 
and definition of E ,  were recently discussed by Turner (1986) and Hunt, Rottman & 
Britter (1983). Note that E,  may differ in magnitude and sign from other definitions 
of entrainment velocity, such as the mean velocity (in a fixed frame) induced by the 
turbulence, or the effective velocity defining the flux of material across a fixed 
interface in a turbulent flow.) 

In  the large-scale structures of jets, where ui, - u;, Erc is small and this is 
consistent with E,/u; being of order unity. I n  the coherent structures measured in 
mixing layers hi, has been computed and measured (Hussain 1986) (see figure 4d) .  
At the stagnation point a t  the centre of the 'ribs' (i.e. longitudinal vortices 
connecting the larger spanwise vortices), there is irrotational straining by the large- 
scale motion, transporting external turbulence into the ribs and amplifying the local 
turbulence. Thus {w,",} and {u,",} increase, but the helicity (u,,.o,,) of a fluid element 
or a fluid volume remains approximately constant during the straining (from (2.4)), 
so that the normalized helicity Jrc is small. I n  this region the turbulence is strong 
enough that the boundary entrainment velocity E,  balances the mean straining 
velocity ( x ui,) (which opposes the spreading of the turbulent region), i.e. Eb/uic x 1. 
However, in the rotational regions of the vortex structures, measurements show 
that Krc is larger, and Eb/uic is small. 

Maxworthy (1974) shows how the entrainment a t  the surface of vortex rings is 
very weak (Eb/uh Q l ) ,  and that the helicity is large. In this case it is associated with 
wave-like motions along the vortex, in which motions perpendicular to the vortex 
lines are suppressed. 

This hypothesis is consistent with a general dynamical argument. Where the 
average modulus of normalized helicity is relatively large in a turbulent flow, the 
production of velocity fluctuations and vorticity diffusion is small, and therefore the 

rcl 
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entrainment is weak (such as in the ‘roller ’ regions of a mixing layer). On the other 
hand, where the normalized helicity of small-scale turbulence is weak it is likely to 
occur in the presence of large-scale straining, because there is stretching of small- 
scale vorticity and strong velocity fluctuations normal to the small-scale vorticity, 
such as occurs in the region of low helicity density at the saddle points of mixing 
layers. Entrainment is large here because these large normal velocity fluctuations 
diffuse the mean vorticity, and because high gradients of amplified vorticity also 
amplify its viscous diffusion. 

This preliminary examination of fluctuating helicity in coherent structures will be 
extended. 

We are grateful for conversations with H. K. Moffatt, and with S. R. Ramsay 
who stimulated this work by requesting a physical understanding of (1.3a), and for 
criticisms from referees. This work was supported by the US Department of Energy 
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